548 research outputs found

    A quasi-static cluster-computing approach for dynamic channelassignment in cellular mobile communication systems

    Get PDF
    Efficient management of the radio spectrum can be accomplished by making use of channel assignment techniques, which work by allocating different channels of the spectrum to the cells of the network in a conflict-free manner (i.e., the co-channel interference is minimized). The problem of dynamically reallocating the channels in response to change in user location patterns, which occurs frequently for a microcell network architecture, is even more difficult to tackle in a timely manner. Most existing approaches use various sequential search-based heuristics which cannot produce high-quality allocation fast enough to cope with the frequent traffic requirement variations. In this paper, we propose a quasi-static approach which combines the merits of both static and dynamic schemes. The static component of our approach uses a parallel genetic algorithm to generate a suite of representative assignments based on a set of different estimated traffic scenarios. At on-line time, the dynamic component observes the actual traffic requirement and retrieves the representative assignment of the closest scenario from the off-line table. The retrieved assignment is then quickly refined by using a fast parallel local search algorithm. Our extensive simulation experiments have indicated that the proposed quasi-static system outperforms other dynamic channel assignment techniques significantly in terms of both blocking probabilities and computational overhead.published_or_final_versio

    Cloud assisted P2P media streaming for bandwidth constrained mobile subscribers

    Get PDF
    Multimedia streaming applications have disruptively occupied bandwidth in wire line Internet, yet today's fledging mobile media streaming still poses many challenges in efficient content distribution due to the form of mobile devices. At the same time, cloud computing is gaining power as a promising technology to transform IT industry and many eminent enterprises are developing their own cloud infrastructures. However, the lack of applications hinders clouds' large-scale implementation. In this paper, we envision a cloud-assisted power-efficient mobile P2P media streaming architecture that addresses the weakness of today's wireless access technologies. Clouds are responsible for storage and computing demanding tasks, and mobile devices colocating with each other share bandwidth and cooperatively stream media content to distribute the load. We first model interactions among mobile devices as a coalition game, and then discuss the optimal chunk retrieval scheduling. Finally, we draw on realistic mobile phone data and utilize an ARIMA model for colocation duration prediction among mobile devices. © 2010 IEEE.published_or_final_versio

    Synergy between adaptive channel coding and media access control for wireless ATM

    Get PDF
    In this paper, we propose mechanisms to exploit the synergy between the Media Access Control (MAC) layer and the physical layer for wireless ATM applications. For simplicity, the system considered consists of a single server and a single wireless ATM terminal. A number of virtual circuit connections (VC), with varying Quality of Service (QoS) requirements, are supported. We focus on two components of the wireless ATM system, namely the channel encoder and the ATM scheduler in the MAC layer. The channel encoder is responsible for protecting the ATM cells over the hostile radio channel while the ATM scheduler is responsible for allocating limited resources to the ATM cells for each virtual connection so as to meet the specified QoS requirements. We consider two configurations, namely System-I with isolated adaptive channel encoder and ATM scheduler, and System-II with bi-directional information exchange. It is found that significant performance improvement on the Cell Loss Rate (CLR) and the Mean Cell Delay (MCD) could be achieved for systems exploiting the synergy. © 1999 IEEE.published_or_final_versio

    On channel adaptive energy management in wireless sensor networks

    Get PDF
    Energy constraints in a wireless sensor network are crucial issues critically affecting the network lifetime and connectivity. To realize true energy saving in a wireless environment,the time varying property of the wireless channel should also be taken into account. Unfortunately, this factor has long been ignored in most existing state-of-the-art energy saving protocols. Neglecting the effects of varying channel quality can lead to an unnecessary waste of precious battery resources, and, in turn, can resultin the rapid depletion of sensor energy and partitioning of the network. In this paper, we propose a channel adaptiveenergy managementprotocol, called CAEM, that can exploit this time varying nature of the wireless link. Specifically, CAEM leverages on the synergistically cross-layer interaction between physical and MAC layers. Thus, each sensor node can intelligently access the wireless medium according to the current wireless link quality and the predicted traffic load, to realize an efficient utilization of the energy. Extensivesimulation results indicate that CAEM can achieve as much as 40% reductionin energy dissipation compared with traditional protocols without channel adaptation. © 2005 IEEE.published_or_final_versio

    A QoE based performance study of mobile peer-to-peer live video streaming

    Get PDF
    Peer-to-peer (P2P) Mobile Ad Hoc Networks (MANETs) are widely envisioned to be a practical platform to mobile live video streaming applications (e.g., mobile IPTV). However, the performance of such a streaming solution is still largely unknown. As such, in this paper, we aim to quantify the streaming performance using a Quality of Experience (QoE) based approach. Our simulation results indicate that video streaming performance is highly sensitive to the video chunk size. Specifically, if the chunk size is small, performance, in terms of both QoE and QoS, is guaranteed but at the expense of a higher overhead. On the other hand, if chunk size is increased, performance can degrade quite rapidly. Thus, it needs some careful fine tuning of chunk size to obtain satisfactory QoE performance. © 2012 IEEE.published_or_final_versio

    System modeling and performance evaluation of rate allocation schemes for packet data services in wideband CDMA systems

    Get PDF
    To fully exploit the potential of a wideband CDMA-based mobile Internet computing system, an efficient algorithm is needed for judiciously performing rate allocation, so as to orchestrate and allocate bandwidth for voice services and high data rate applications. However, in existing standards (e.g., cdma2000), only a first-come-first-served equal sharing allocation algorithm is used, potentially leading to a low bandwidth utilization and inadequate support of high data rate multimedia mobile applications (e.g., video/audio files swapping, multimedia messaging services, etc.). In this paper, we first analytically model the rate allocation problem that captures realistic system constraints such as downlink power limits and control, uplink Interference effects, physical channel adaptation, and soft handoff. We then suggest six efficient rate allocation schemes that are designed based on different philosophies: rate optimal, fairness-based, and user-oriented. Simulations are performed to evaluate the effectiveness of the rate allocation schemes using realistic system parameters In our model.published_or_final_versio

    On adaptive frequency hopping to combat coexistence interference between bluetooth and IEEE 802.11b with practical resource constraints

    Get PDF
    In contrast to traditional frequency hopping techniques, Adaptive Frequency Hopping (AFH) is a low cost and low power solution to avoid interference dynamically. While each AFH algorithm proposed previously is shown to be efficient, a detailed performance analysis of various AFH mechanisms under realistic resource constraints is yet to be done. In particular, based on our performance study on Bluetooth systems presented in this paper, we have found that the AFH mechanism adopted by IEEE 802.15 Task Group 2 (TG2) is very sensitive to memory and power limitations. We then propose a novel Interference Source Oriented Adaptive Frequency Hopping (ISOAFH) approach based on a cross-layer design, in which the baseband layer of Bluetooth considers not only the instantaneous channels condition but also the physical layer transmission characteristics of potential interference sources in determining the hop sequence. In our simulations using detailed MATLAB Simulink modeling, we find that our proposed method is much more robust in that it is insensitive to memory and energy constraints. Indeed, our approach generally achieves a lower collision rate and higher ISM spectrum utilization.published_or_final_versio

    Competitive Bandwidth Reservation via Cloud Brokerage for Video Streaming Applications

    Get PDF
    published_or_final_versio

    On the synergy between adaptive physical layer and multiple-access control for integrated voice and data services in a cellular wireless network

    Get PDF
    In this paper, we propose a novel design to exploit the synergy between the multiple-access control (MAC) layer and the physical layer of a cellular wireless system with integrated voice and data services. As in a traditional design, the physical layer (channel encoder and modulator) is responsible for providing error protection for transmitting the packets over the hostile radio channel, while the MAC layer is responsible for allocating the precious bandwidth to the contending users for voice or data connections. However, a distinctive feature of our proposed design is that in the physical layer, a variable-rate adaptive channel encoder is employed to dynamically adjust the amount of forward error correction according to the time-varying wireless channel state such that the MAC layer, which is a reservation-based time-division multiple-access protocol, is able to make informed decisions as to bandwidth allocation. Specifically, based on the channel state information provided by the physical layer, the MAC protocol gives higher priority to users with better channel states. This novel synergistic mechanism between the two protocol layers can utilize the system bandwidth more effectively. The multiple-access performance of the proposed scheme is compared with two baseline systems. The first baseline system consists of the same reservation-based MAC protocol but with a traditional fixed-rate physical layer. The second system consists of the same reservation-based MAC protocol and the same channel adaptive physical layer, but without interaction between the two layers. All three protocols have a request queue, which stores the previous requests that survive the contention but are not allocated information slots. Our extensive simulation results demonstrate that significant performance gains are achieved through the exploitation of the synergy between the two protocol layers.published_or_final_versio

    On game theoretic peer selection for resilient peer-to-peer media streaming

    Get PDF
    Peer-to-peer (P2P) media streaming quickly emerges as an important application over the Internet. A plethora of approaches have been suggested and implemented to support P2P media streaming. In our study, we first classified existing approaches and studied their characteristics by looking at three important quantities: number of upstream peers (parents), number of downstream peers (children), and average number of links per peer. In existing approaches, peers are assigned with a fixed number of parents without regard to their contributions, measured by the amount of outgoing bandwidths. Obviously, this is an undesirable arrangement as it leads to highly inefficient use of the P2P links. This observation motivates us to model the peer selection process as a cooperative game among peers. This results in a novel peer selection protocol such that the number of upstream peers of a peer is related to its outgoing bandwidth. Specifically, peers with larger outgoing bandwidth are given more parents, which make them less vulnerable to peer dynamics. Simulation results show that the proposed protocol improves delivery ratio using similar number of links per peer, comparing with existing approaches under a wide range of system parameters. © 2009 IEEE.published_or_final_versio
    • …
    corecore